Fukushima et cancer de la thyroïde

 

Je cite : « Pour les cinq ans de l’explosion des réacteurs de Fukushima, diverses actions ont été menées vendredi passé à Genève. L’occasion de rappeler que la Suisse n’est toujours pas à l’abri d’accidents nucléaires.« 

Il ne s’agit pas d’un accident nucléaire direct comme Tchernobyl, bien que les conséquences soient catastrophiques. La tragédie de Fukushima a pour cause un séisme et un tsunami en 2011, ayant entraîné alors des dommages au sein d’une centrale nucléaire. Construire des centrales nucléaires dans des régions sismiques comporte un grand risque.

 

Je cite : « D’après une étude de 2015, le risque de développer un cancer de la thyroïde est douze fois plus élevé parmi les résidents de Fukushima, comparé au reste de la population japonaise. »

Le risque est réel, je l’admets. Mais il faut examiner ce que les statistiques nous révèlent vraiment, en évitant certains biais (voir ci-dessous le texte surligné en rouge).

 

Je cite : « L’occasion de rappeler que la Suisse n’est toujours pas à l’abri d’accidents nucléaires. »

 

Le risque zéro n’existe nulle part. Mais cela m’étonnerait que la Suisse soit victime d’un tsunami. Je me répète : la centrale nucléaire de Fukushima n’a pas explosé d’elle-même, la cause est un tsunami ! Mais la Suisse est dans une région montagneuse où le risque sismique existe. Si Tchernobyl a été une catastrophe nucléaire directe, Fukushima est d’abord une catastrophe sismique naturelle ayant entraîné des conséquences radioactives réelles, et cela risque de recommencer si le Japon continue d’utiliser l’énergie nucléaire, le risque est élevé.

Néanmoins, il est opportun d’apporter un complément d’information, avec cette page : http://www.futura-sciences.com/magazines/sante/infos/actu/d/enfant-fukushima-vive-polemique-autour-explosion-nombre-cancers-61978/

En effet, les résultats de l’étude sont inquiétants, mais l’étude elle-même est critiquée.

De plus, comme le Japon a été victime des bombes atomiques à Hiroshima et Nagasaki en 1945 (ce qui relève du crime contre l’humanité, à mon avis), les contaminations radioactives antérieures à l’accident de Fukushima peuvent fausser les données lors de l’étude sur les conséquences de Fukushima.

Je ne nie pas les risques réels de contamination radioactive à Fukushima, mais je me contente des faits tels qu’ils sont. Je ne cautionne pas l’idéologie antinucléaire qui ne considère que les données qui l’arrange afin de servir un dogmatisme manichéen aveugle.

Il ne faut pas nier les risques liés au nucléaire, tout comme il ne faut pas diaboliser le nucléaire à outrance.

John Philip C. Manson

Scepticisme sur un catalyseur d’énergie nucléaire

Le mécanisme décrit dans l’article de Wikipedia est sujet à caution. Il n’est pas validé par la science.

Je ne critiquerai pas, ici, la fusion froide. Ce n’est pas à moi de prouver que la fusion froide n’existe pas ; c’est à ses partisans de prouver avec transparence qu’elle existe.

Cependant, il est possible de réfuter clairement certains passages quantitatifs. Voici l’image d’un paragraphe précis ci-dessus :

NiH

Pour obtenir le nickel 62 à partir du nickel 58, il faut bombarder avec des neutrons ou alors par des protons qui provoquent une émission d’un électron chargé négatif. Le nickel 62 est nucléairement stable, mais l’obtenir aura entraîné l’émission de rayons gamma…

Une énergie nucléaire de 37,36 MeV correspond à 5,9776×10⁻¹² J et cela correspond à un rayonnement gamma de longueur d’onde de 3,32×10⁻¹⁴ m.

Avec une masse de 5 g de nickel 58, ce qui correspond à 0,0862 mole comme quantité de matière, cela équivaut à une énergie nucléaire totale de 310,3 milliards de joules rayonnée en 6 mois, ce qui correspond à une puissance moyenne de 19 658,8 W (et non pas 10 000 W ou 10 kW) pour une durée de 6 mois. Donc les chiffres ne collent pas, je trouve une valeur double par rapport à celle de Wikipedia.

Ensuite, le gros problème, c’est que les rayons gamma sont très dangereux et incitent à ne pas utiliser ce type d’énergie nucléaire, si évidemment cette énergie existe… À moins que le mystérieux catalyseur marche, mais sans lien avec des rayons gamma…

Exemple : je me place à une distance de 1 mètre du catalyseur au nickel, alors quel rayonnement je subis quantitativement, d’après un compteur Geiger ?

Si la puissance rayonnée est de 10 kW, alors mon corps absorbe un flux de 796 W en rayons gamma (donc 133 mille milliards de Bq ?). Avec un corps de masse moyenne, cela fait environ 10 J/kg à chaque seconde écoulée. Donc une dose radioactive de 10 Sv/s, soit 36 000 Sv/h ou 36 milliards de µSv/h. Concrètement, 3,6 millions de rems par heure. Donc, avec un catalyseur de puissance 10 kW et émetteur de rayons gamma, alors à une distance de 1 mètre du catalyseur la mort humaine par irradiation est assurée dès la première seconde… Ensuite, le rayon d’action à l’intérieur duquel les rayons gamma présentent un taux de radioactivité supérieur à la radioactivité naturelle (0,1 µSv/h) est une distance bien trop importante (des kilomètres si les rayons gamma n’étaient pas absorbés par l’atmosphère) pour rendre exploitable un catalyseur nucléaire…

Je ne me prononce pas trop : ou le catalyseur fonctionne (mais sans rayons gamma) et Wikipedia n’est pas foutu de livrer des données correctes ; ou alors tout est faux… Je vais en parler au Dr Goulu pour avoir son avis. Je vais aussi me relire plus tard pour revérifier mes calculs.

  • «Are you telling me that you built a time machine out of a DeLorean ???» (from the movie «Back to the future»)

iconlol

© 2013 John Philip C. Manson

Retour vers le débat sur le nucléaire, via Newsring

Retour vers le débat sur le nucléaire, via Newsring

Newsring-nucleaire

Comme les écologistes, j’admets pleinement que les déchets nucléaires posent un vrai problème sérieux. J’admets aussi pleinement que la sécurité des centrales nucléaires est faillible, comme n’importe quelle infrastructure. Rien n’est parfait. L’autre jour, une météorite de 45 mètres et de 130000 tonnes a frôlé la Terre à une distance de 27600 km. Si cet astre s’était écrasé sur Terre avec une vitesse de 7,8 km/s, il aurait libéré une énergie équivalente à environ une mégatonne, soit environ 67 fois la puissance de l’horrible bombe d’Hiroshima. Les dégâts auraient été terribles sur une grande agglomération habitée… Mais les conséquences seraient encore pires si la météorite percutait une centrale nucléaire. Le risque zéro n’existe pas.

Ensuite, en ce qui concerne les solutions qui cherchent à remplacer le nucléaire, elles présentent des risques nettement moindres. Mais elles présentent elles aussi des inconvénients que l’on ne peut pas se permettre de négliger. Pour en savoir plus, regarder le documentaire vidéo de la chaîne TV France2 via mon article ici :  https://jpcmanson.wordpress.com/2013/02/09/energies-vertes-lenvers-du-decor/

Pour la transition énergétique, il faut nécessairement des solutions réalistes et rationnelles.

  • Éoliennes et panneaux solaires ? Oui, mais inefficaces sans les énergies d’appoint (centrales thermiques). Le charbon a malheureusement de l’avenir. À ce jour, le meilleur moyen de lutter contre les émissions de CO2, c’est le nucléaire. Renoncer au nucléaire et aux énergies fossiles, ce serait renoncer tout simplement à l’énergie, mais on ne peut pas faire cela. Mais développer à l’extrême les énergies renouvelables aurait un coût impossible à gérer dans le contexte de la crise économique actuelle. Bref, il s’agit d’une problématique complexe. Pour commencer, on devrait s’efforcer de lutter fermement contre la déforestation dans le monde : https://jpcmanson.wordpress.com/2013/01/24/courte-analyse-dun-article-dun-magazine-de-2007/   dont je reprends mes arguments ici : «13 millions d’hectares de forêts disparaissent sans être remplacées chaque année sur Terre. Sachant que 100 hectares sont équivalents à 1 km², alors 130 000 km² de forêts disparaissent dans le monde sans être remplacées chaque année. Oui, chaque année, c’est l’équivalent de la superficie de l’Angleterre qui disparaît en forêts chaque année dans le monde ! C’est aussi équivalent à la disparition d’une forêt de la taille d’un grand terrain de football (120 mètres × 90 mètres) toutes les 3 secondes !!!!!»
  • http://www.leparisien.fr/flash-actualite-economie/charbon-qui-rit-gaz-qui-pleure-la-nouvelle-donne-des-centrales-electriques-22-01-2013-2502701.php

© 2013 John Philip C. Manson

Analyse partielle de la «nouvelle encyclopédie du savoir relatif et absolu»

Un sujet d’étude intéressant : la science dans les œuvres littéraires. Si j’ai plusieurs fois pensé à parler de la crédibilité scientifique dans certains livres (romans, essais philosophiques…), je ne l’avais pas encore fait. Le moment est venu pour le faire.

S’il vous plaît, si vous êtes un grand fan inconditionnel des romans de Bernard Werber, veuillez ne pas lire cet article…

D’après Wikipedia, on peut lire que certains critiques reprochent aux romans de science-fiction de Bernard Werber de présenter certains concepts d’apparence scientifique comme des certitudes alors que ce n’est pas le cas ; et que L’Ultime Secret illustre bien cette tendance, on peut y lire sur la quatrième de couverture la phrase suivante : « Ils vont aller de surprise en surprise jusqu’à l’extraordinaire dénouement basé sur une découverte scientifique peu connue mais réelle ». D’autres critiques assimilent la futurologie à de la pseudo-science.

Ce n’est pas moi qui le dit, c’est l’article de Wikipedia. Mais pour se donner une idée claire des ouvrages de Werber, c’est de les lire. L’auteur qualifie parfois ses œuvres comme de la  philosophie-fiction ; je trouve ce terme pertinent et mieux adapté que celui de science tout court. Heureusement. Le style de l’écrivain est celui de la science-fiction et les contes philosophiques, et ne se proclame pas comme scientifique. La démarcation est implicite, mais cependant je me demande si le grand public prend réellement conscience de la distinction entre la fiction littéraire et la science. Les oeuvres de Werber rencontrent un grand succès, c’est de la littérature comme n’importe quels romans, et si j’avais été bien plus jeune je pense que ses livres figureraient dans ma bibliothèque parce qu’autrefois mon esprit tourmenté mélangeait naïvement les diverses influences issues indifféremment de la science ou de la fiction. Lire Werber pour se divertir et se distraire, pourquoi pas ? Toutefois, croire que de tels livres sont de la vulgarisation scientifique (au sens pédagogique) est un égarement. Je vais l’expliquer ici bas. Un égarement provoqué par les lecteurs eux-mêmes si ceux-ci ne font pas la différence entre ce qui relève de la science et ce qui relève de la littérature.

Ce qui va suivre dans mon présent article est une analyse critique. Le but n’est absolument pas de fustiger un écrivain. Tout le monde peut lire Werber à volonté. Il vaut mieux même lire pour analyser que critiquer sans même avoir lu. On peut librement se distraire en lisant des oeuvres de fiction, même moi j’en lis parfois. Par exemple, je vois en Jules Verne un très grand auteur de science-fiction, pour la qualité de son réalisme. Puis côté réalisme dans la littérature, je suis un lecteur inconditionnel de Maupassant.

À la TV, l’émission «Temps X» fut divertissante, animée par deux célèbres jumeaux (les frères Bogdanoff) dont le style à l’époque (1979) était tout à leur honneur, comparé à aujourd’hui…

Ma démarche est explicite à propos du livre : lire pour analyser, éviter de critiquer sans avoir lu, et surtout éviter de prendre de la fiction pour de la vulgarisation scientifique.

Donc pour revenir à l’objet de mon article ici, je prépare l’analyse de quelques paragraphes divers du livre «Nouvelle encyclopédie du savoir», afin de mettre en évidence une différenciation épistémologique transparente entre les faits scientifiques et la fiction littéraire liée au style de l’écrivain.

Il existe une distinction entre la science-fiction, la science fictive et la science tout court.

Ci-dessous, la relecture du livre de Werber, à travers laquelle le texte de fiction est confronté à mes arguments basés sur la vulgarisation scientifique.

ANALYSE de «Nouvelle encyclopédie du savoir relatif et absolu»

[aux éditions Albin Michel (2009)]

Premier paragraphe intitulé «Au début» :

  • «L’univers, c’était du rien avec un peu d’hydrogène.»

Ou il n’y a rien, ou il y a tout. Le commencement de l’univers, le Big Bang, était très dense et très chaud, toute la matière était réunie, et partout. Ce n’était pas «rien».

  • «H. Et puis il y a eu le réveil. L’hydrogène détone.»

H, c’est la lettre majuscule qui désigne l’élément chimique hydrogène. L’atome d’hydrogène est constitué d’un proton et d’un électron.

Le réveil ? Le Big Bang n’est pas un état d’attente suivi ensuite par un événement soudain. Le Big Bang est le commencement de l’espace et du temps. Il n’y a pas proprement dit un «réveil» avant même le Big Bang, puisqu’il n’y avait pas d’avant. Le Big Bang existe à partir de l’existence de l’espace-temps à partir duquel on peut décrire, connaître et comprendre les lois naturelles de la physique. Avant l’espace et le temps, il n’y a rien à expliquer, c’est hors de portée de la science.

L’hydrogène détone ? La détonation est le résultat d’une combustion rapide, entre l’hydrogène et l’oxygène, par réaction chimique. Mais cela n’a rien à voir avec le Big Bang.  Le Big Bang est un état très condensé de matière exotique très chaude à partir duquel des particules élémentaires (des quarks) ont rapidement formé des atomes d’hydrogène. Mais lors du Big Bang, l’hydrogène ne s’enflamme pas avec l’oxygène car l’oxygène était absent, et en plus la température était beaucoup trop élevée pour faire des réactions chimiques.

  • «Le Big Bang explose et ses éléments bouillants se métamorphosent en se répandant dans l’espace.»

Le Big Bang n’est pas une explosion. C’est une erreur conceptuelle fréquente. Le Big Bang est une expansion de l’espace, le Big Bang n’est pas une explosion classique de matière très chaude qui remplit un espace froid infini absolument vide. Le Big Bang a eu lieu partout, en tout point de l’espace. Il n’est pas une explosion locale et isolée.

  • «H, l’élément chimique le plus simple, se casse, se mélange, se divise, se noue pour former des choses nouvelles. L’univers est expérience.»

Oui, l’hydrogène est l’élément chimique le plus simple. Plus précisément l’isotope 1 (un proton, un électron, pas de neutron(s)), les autres isotopes de l’hydrogène étant «moins simples» : le deutérium (un neutron en plus) et le tritium (avec deux neutrons) lui-même radioactif.

Mais voila, l’élément le plus simple, et parce que c’est le plus simple, l’hydrogène (constitué d’un seul proton), il ne se casse pas. La fission nucléaire concerne seulement les atomes les plus lourds, comme l’uranium et le plutonium par exemple. Les noyaux les plus légers, comme l’hydrogène, le deutérium, l’hélium et le tritium, peuvent seulement fusionner entre eux (fusion thermonucléaire) pour former des noyaux plus lourds.

Pour former des choses nouvelles, l’hydrogène n’a pas besoin de changer sa nature. Une étoile prend forme par la contraction gravitationnelle de grandes étendues d’hydrogène gazeux. C’est seulement après sa mise en forme (une sphère ou plutôt géoïde) qu’une étoile commence à rayonner sa lumière, lorsque l’hydrogène fusionne pour produire de l’hélium. De très grandes étendues d’hydrogène peuvent former des galaxies, mais quasiment toute la matière de ces vastes ensembles est composé d’hydrogène à ses débuts.

L’univers une expérience ? J’aurais formulé ça autrement. Si c’est une expérience, elle est l’œuvre d’un hasard aveugle et dénué d’intentionnalité. Philosophiquement, la science se fie plutôt au principe anthropique faible. Il n’y a pas d’expérience si l’univers n’a pas d’auteur. Une expérience nécessite des observateurs qui cherchent des résultats. Mais la question métaphysique d’un quelconque démiurge reste à jamais indécidable parce que scientifiquement invérifiable et donc irréfutable. On ne peut donc pas prouver que l’univers est lui-même une «expérience».

  • «L’ensemble de notre univers-espace-temps local, qui était composé à 100% d’hydrogène, est maintenant une soupe remplie d’atomes bizarres selon les proportions suivantes : 90% d’hydrogène, 9% d’hélium, 0,1% d’oxygène […]»

L’idée d’espace-temps local n’a pas de sens, puisque le Big Bang s’est produit partout, cela concerne tout l’espace-temps, et le résultat est le même partout. Le Big Bang n’est pas un événement qui s’est produit dans un endroit privilégié de l’univers.

100% d’hydrogène ? Ce fut le cas très tôt lors du Big Bang, mais très peu de temps (dans les 3 premières minutes). La nucléosynthèse primordiale (vers 1 milliard de degrés Celsius) a rapidement entraîné la fusion thermonucléaire d’une partie de l’hydrogène pour former du deutérium, de l’hélium, du lithium et du béryllium avant même l’apparition des premières étoiles.

Puis concernant la composition chimique de l’univers, le modèle actuel présuppose que la matière visible ordinaire ne représente qu’une petite fraction (0,3%) de ce qui existe dans l’univers, le reste étant a priori majoritairement constitué de matière noire et d’énergie noire.

Concernant la matière chimique ordinaire, ce document sur les preuves du Big Bang indique ces proportions : 75% d’hydrogène et 25% d’hélium, et les autres éléments chimiques à l’état de traces. Mais les proportions indiquées par Bernard Werber sont plutôt proches des proportions chimiques du soleil, et non celles de l’univers plus généralement : «hydrogène à 92,1 % et hélium à 7,8 %», et oxygène à 0,061%. Ma remarque est confirmée par cette phrase dans une page de La Recherche : «Dès les années 1940, les astronomes mesurent la répartition de la composition chimique de l’Univers et trouvent partout 75 % d’hydrogène, 25 % d’hélium et des traces d’éléments plus lourds».

Au lieu de l’expression confuse «espace-temps local», ou même «En ne citant que les éléments chimiques les plus répandues dans notre univers-espace-temps», l’auteur aurait dû dire plutôt «système solaire» afin de distinguer celui-ci de la composition chimique de l’univers.

Deuxième paragraphe, intitulé «Réalité parallèle» :

  • «La réalité dans laquelle nous sommes n’est peut-être pas la seule. Il existerait d’autres réalités parallèles.»

Si l’idée est séduisante, elle n’est pas (pour l’instant) une hypothèse scientifique crédible. Cette idée métaphysique de réalité parallèle est souvent évoquée dans les débats philosophiques. En physique, à propos des réalités parallèles, comment concevoir une expérience ou une observation permettant de vérifier si l’hypothèse est reliée à des faits ou de réfuter l’hypothèse à travers ces faits ? Je me pose la question depuis longtemps à propos de certaines théories, comme la théorie des cordes et certaines interprétations plus ou moins loufoques de la physique quantique. Comment prouver ou réfuter l’existence de dimensions spatiales  supplémentaires ? Comment prouver ou réfuter l’existence d’univers parallèles ? Les théories scientifiques (même les plus crédibles) sont des représentations faillibles de la nature, elles ne sont pas la vérité en soi ; mais des idées a priori non expérimentables en physique ne représentent rien de concrètement factuel… Des idées exemptes de l’appui des faits, pour moi et pour les scientifiques, sont des fables. La conviction n’est le fruit que de la preuve.

Si le concept de «matière noire» commence à trouver enfin des voies expérimentales (http://www.futura-sciences.com/magazines/matiere/infos/actu/d/physique-detecter-matiere-noire-grace-rmn-48829/#xtor=EPR-17-%5BQUOTIDIENNE%5D-20130911-%5BACTU-Detecter-la-matiere-noire-grace-a-la-RMN–%5D), le concept d’univers parallèles reste invérifiable à ce jour.

  • «Par exemple, alors que vous lisez ce livre dans cette réalité, dans une autre réalité vous êtes en train de vous faire assassiner, dans une troisième réalité vous avez gagné au loto […]»

L’idée des univers parallèles est fortement inspiré de la physique quantique, mais ce qu’on appelle la superposition d’états concerne les très petites échelles d’espace. À notre échelle macroscopique, la décohérence quantique rompt cette superposition. Les univers parallèles, jusqu’à preuve du contraire, appartiennent à la science-fiction. Il convient de se souvenir que les modèles mathématiques sont une représentation faillible de la réalité, ils ne sont pas censés être la réalité elle-même, ni ne sont censés se substituer à la réalité pour dire que les maths elles-mêmes sont la trame et la cause de la réalité. Ce genre d’inversion de cause à effet est similaire au débat stérile comme celui du paradoxe de l’oeuf et de la poule, ainsi que certains détails des thèses créationnistes qui tentent de convaincre que la conscience précède la matière, alors que la conscience ne peut exister sans structure matérielle (les réseaux de neurones et réseaux neuromimétiques : pas de pensée sans cerveau).

  • «Pour un physicien quantique il est acceptable de dire que le chat est à 50% mort et à 50% vivant.»

En physique quantique, on dira plutôt que la superposition d’états indique que le chat de Schrödinger (rappel : c’est une expérience de pensée, et le chat est allégorique et fictif) est à la fois mort et vivant. Il est vrai que c’est une question de probabilités.

  • «[…] il existe une personne qui sait si le chat est mort ou si le chat est vivant même sans ouvrir la boite : c’est le chat lui même.»

À première vue, c’est logique. Mais le chat est fictif, il sert à représenter le comportement des particules à l’échelle subatomique. Les particules élémentaires, elles, n’ont pas de conscience, la matière inerte n’a pas conscience de son propre environnement…

Les êtres vivants les plus simples, les virus, sont composés de quelques centaines ou milliers d’atomes. Un codon d’ADN ou d’ARN se compose lui-même de moins de 100 atomes. Imaginer une forme de vie dont la taille est en-deçà de la taille minimale d’un gène est un non-sens en biochimie et en génétique. À l’échelle subatomique, donc à une dimension inférieure à celle d’une seule molécule, la superposition d’états se produit chez les particules concernées, mais à cette échelle il n’existe aucun observateur…

  • «De toutes les planètes connues, la Terre est la plus complexe.»

Au niveau des phénomènes biochimiques et biologiques, oui c’est vrai, la complexité est à son paroxysme en ce qui concerne la vie sur Terre. Mais au niveau des phénomènes géologiques, la Terre est aussi ordinaire qu’une autre planète. L’une des grosses lunes de Jupiter, Io, se caractérise bien par une activité volcanique et tectonique assez complexe, par exemple.

  • «[…] deux forment de vie qui culminent par leur intelligence. Les hommes et les fourmis.»

Les fourmis sont des insectes sociaux. Cependant, il s’agit d’une forme d’intelligence collective et décentralisée, une forme d’intelligence assez simple en somme, mais qui assure la survie de leurs espèces (il y a de nombreuses espèces de fourmis) depuis au moins 100 millions d’années, ce qui est remarquable. Les abeilles sont moins connes, car moi je mange du miel, ce que les fourmis ne fabriquent même pas… 😉 Les abeilles et les fourmis forment une même famille : les hyménoptères.

Quant à l’intelligence humaine… J’en doute… On ne peut pas mesurer ce qu’on appelle «intelligence», car ce n’est pas vraiment bien défini. Les tests de QI présentent une marge d’incertitude trop importante et qui interdit par conséquent de conclure sur les résultats de façon objectivement fiable ; mes arguments ici :  https://jpcmanson.wordpress.com/2012/05/24/experience-statistique-sur-9-tests-de-qi/

L’intelligence animale est particulièrement le fait des mammifères comme les singes anthropoïdes, de certaines espèces d’oiseaux comme les corvidés, des chiens, des éléphants, des dauphins…

  • «Autour d’un atome, on trouve plusieurs orbites d’électrons. Certains sont tout proches du noyau. D’autres sont éloignés.»

Le mot «orbite» est plutôt utilisé en mécanique céleste et en astronomie. Pour les électrons autour d’un noyau, on parle d’orbitales.

Il peut n’y avoir qu’une seule orbitale : c’est le cas de l’atome d’hydrogène et de l’atome d’hélium. Dans ce cas, il s’agit de l’orbitale 1s². Au-delà de l’hélium, les atomes possèdent plusieurs orbitales.

Puis, un électron proche ou éloigné du noyau, c’est trivial… Éloignement très relatif, car à l’échelle de l’atome, une orbitale a une taille d’environ un dixième de millionième de millimètre.

En physique, les orbitales électroniques ne sont pas des orbites précises, la structure de l’atome est assez floue, entachée d’incertitude quantitative sur la position, la masse et la vitesse des électrons. On parle alors de nuage électronique.

  • «Déplacer un électron d’une couche basse pour l’amener à une couche plus haute, […] : il rayonne, […]. Par contre, si on déplace un électron d’une orbite haute pour l’amener dans une orbite plus basse, c’est le contraire qui se produit.»

À vrai dire, l’écrivain a inversé le phénomène décrit, c’est le contraire qui se produit.

En fait, l’électron passe d’une orbitale basse vers une orbitale haute quant il a absorbé un photon, donc il ne rayonne pas de photon…

En effet, d’après le spectre de l’atome d’hydrogène, lorsque l’électron passe d’un niveau élevé à un niveau plus bas, il émet un photon dont l’énergie vaut la différence entre celles des deux niveaux ; ainsi, la lumière émise ne peut prendre que quelques valeurs discrètes ; c’est ce que l’on appelle son spectre.

D’après le texte de Werber, il faut déplacer un électron, mais justement pour déplacer un électron vers une orbitale plus éloignée du noyau, il faut exercer quelque chose dessus : en envoyant un photon que l’électron absorbe. Dans le cas d’un atome excité, quand un électron passe d’une orbitale haute à une orbitale basse, il gagne de l’énergie qu’il doit donc céder en émettant un photon. Mais lorsque l’atome est à son état fondamental, l’électron qui passe d’une orbitale basse vers une orbitale haute ne peut le faire que s’il absorbe un photon incident dont l’énergie est égale à la différence des deux niveaux des énergies des orbitales.

  • Ensuite, Werber parle d’un «neuropsychologue américain, le professeur Rosenzweig,  de l’université de Berkeley, qui a voulu connaître l’action du milieu sur nos capacités cérébrales». Werber cite aussi une expérience faite sur des hamsters, et raconte que les hamsters ayant été occupés à diverses activités présentaient des différences corticales par rapport aux hamsters qui étaient restés oisifs.

Werber précisa pour les hamsters actifs que leur masse corticale était de 6% de plus que le groupe témoin, et la taille des neurones était 13% de plus que ceux du groupe témoin.

J’en déduis moi-même que la densité des neurones des hamsters actifs aura diminué de 26,5% par rapport à la densité des neurones des hamsters oisifs. Pourquoi n’y a t-il pas conservation de la densité ? Quelles molécules se sont accumulées dans les neurones actifs ?

Rosenzweig est le nom de plusieurs scientifiques homonymes. Comme on ne connaît pas le prénom du professeur, je dois rechercher sur Google afin de savoir de quel savant il s’agit. Je découvre qu’il s’agit probablement de Mark R. Rosenzweig (1922-2009), c’était un authentique chercheur américain spécialisé dans l’étude de la neuroplasticité animale. Rosenzweig a montré que le cerveau animal ne devient pas mature à l’issu de l’enfance mais qu’il continue de se développer et de se remodeler, de s’adapter.

L’expérience de Rosenzweig, narrée par Werber, fut réalisée en 1947, mais avec des rats, pas avec des hamsters.

Puis en réalité, Rosenzweig a montré qu’un environnement enrichi (des jeux pour les rats) augmentait l’activité d’une enzyme : la cholinestérase. Une enzyme c’est une protéine. C’est seulement en 1962 qu’il a découvert que l’activité ludique des rats entraînait une augmentation du volume de leur cortex. En 1987, Rosenzweig publia un livre : «Enriched and Impoverished Environments: Effects on Brain and Behavior» (Environnements enrichis et appauvris : effets sur le cerveau et le comportement).

Vu sur un blog de WordPress, un extrait de l’encyclopédie de Werber :

  • «L’humanité a connu trois vexations.»
  • «La première c’est Nicolas Copernic qui a déduit de ses observations du ciel que la Terre n’était pas au centre de l’univers.»
  • «La deuxième c’est Charles Darwin qui a conclu que l’homme descendait d’un primate et était donc un animal comme les autres.»
  • «La troisième c’est Sigmund Freud qui a signalé que la motivation réelle de la plupart de nos actes politiques ou artistiques était la sexualité.»

Trois vexations ? J’aurais formulé ça autrement. Des (vraies) découvertes scientifiques sont des bienfaits. La science est significatrice de progrès. La science n’est pas un châtiment, elle est un outil qui sert l’humanité.

Nicolas Copernic, mathématicien et astronome, a énormément contribué à la science, un pas de géant. Il a brisé un tabou. À partir de son travail, on a peu à peu compris que les faits ont prévalence sur les dogmes bibliques. C’est un bienfait de s’affranchir des croyances qui font de nous des esclaves de l’absolutisme et de l’obscurantisme.

Ensuite, Darwin s’est appuyé sur des fossiles et des données géologiques pour étayer sa théorie de l’évolution des espèces, montrant que l’Homme n’est pas une création divine mais un animal ordinaire parmi les autres. C’est un bienfait de mieux connaître notre propre espèce et de comprendre l’organisation de la vie. Là encore, la science prévaut aux dogmes bibliques. La science enseigne des connaissances factuelles, elle apprend à observer et expérimenter. La religion n’enseigne qu’à croire et à obéir. De nos jours encore, certaines mouvances font propagande de doctrines créationnistes (qui se proclament de la science qu’elles rejettent pourtant) selon lesquelles la Terre n’a que 6000 ans et que l’Homme fut créé directement par Dieu (et parfois disent que l’Univers fut créé par une intelligence transcendante (Intelligent Design).

Freud ? Il a institué un dogme tenace (la psychanalyse), sans l’appui de preuves. Il n’y a pas d’observations cliniques comme bases à la psycho-théorie de Freud. L’idéologie de Freud est un dogme entièrement construit sur des interprétations personnelles imaginaires, subjectives et fictives. De plus, la doctrine de Freud est homophobe… La psychanalyse est une pseudo-science.

La véritable vexation, la véritable honte, c’est la survivance tenace de dogmes obscurantistes (dont certains dogmes s’autoproclament scientifiques) à notre époque. Voila le vrai scandale.

Comme on a un bon aperçu des deux paragraphes traitant de science dans le livre de Werber, ainsi qu’une analyse intéressante qui en a résulté, je pense qu’il n’est pas nécessaire de continuer d’analyser le reste du bouquin, je vais m’en arrêter là, l’analyse a été suffisamment concluante…

Je clos l’analyse critique de cette «nouvelle encyclopédie du savoir relatif et absolu» par une citation de Bernard Werber lui-même : «Allons jusqu’au bout de nos erreurs sinon nous ne saurons jamais pourquoi il ne fallait pas les commettre».

Quelle ironie.  😀

BIBLIOGRAPHIE ET VULGARISATION SCIENTIFIQUE

  • Comme j’aime (et préfère) les bouquins scientifiques intéressants, et si d’éventuels lecteurs sont en quête désespérée de livres plus rigoureux, je recommande le livre d’un des plus grands mathématiciens actuels, Cédric Villani, «Théorème vivant» (éditions Grasset), dans lequel il expose les étapes de ses recherches en mathématiques sur « l’amortissement de Landau » et l’équation de Boltzmann. Passionnant et instructif. À voir absolument. Contenu compréhensible surtout par ceux qui ont un background scientifique (mais les scientifiques ne comprennent pas toujours leurs collègues, lol).
  • Autre livre que je recommande : « Petit cours d’autodéfense intellectuelle » par Normand Baillargeon. Très intéressant.
  • Je pense personnellement que les gens désirant s’informer via la vulgarisation scientifique doivent s’appuyer sur des bases scientifiques non ambiguës et adaptées, avec l’aide d’un certain contrôle académique. MM. Villani et Stephen Hawking sont d’excellents exemples de vulgarisateurs.
  • Dans des livres de styles plus littéraires, la science est souvent romancée, parodiée, caricaturée, la science se laisse construire une image faussée, biaisée et/ou lacunaire dans l’esprit du public, et je trouve cela dangereux. Par exemple, je connais un lecteur de vulgarisation scientifique, et qui croit à tort que les connaissances révélées sont absolument définitives et inaliénables, alors que la science a une démarche de remise en question de tout. En effet, la science n’est pas une accumulation de vérités, mais une attitude iconoclaste qui brise des «certitudes», en remettant à plat les données du réel et les interprétations construites sur tout cela. Créer des vocations scientifiques peut passer par des méthodes ludiques, amusantes, divertissantes (comme l’opération «La main à la pâte»), pourvu que le rôle didactique soit rempli, en montrant ce qu’est vraiment la science à travers la méthode scientifique et à travers les critères épistémologiques. Ce que je veux dire, c’est qu’il existe un danger latent : des personnes ont une vocation soudaine pour la science, mais à travers de la mauvaise vulgarisation, ces personnes tombent des nues quand elles entreprennent des études scientifiques, leur déception envers la science peut entraîner un rejet, et pire, une dissuasion par les déçus envers d’éventuels néophytes sur le point d’avoir une vocation scientifique. Présenter ce qu’est vraiment la science, sa définition, ça évite bien de mauvaises surprises. La science, c’est de la logique, de la rigueur, une exigence d’objectivité, la nécessité d’observations et d’expériences. La science n’est pas exactement de la philosophie, la science accepte toutes les hypothèses, seulement si celles-ci ont la possibilité d’être réfutables. La philo est un argumentaire d’idées orientées par la raison des philosophes. La science, elle, repose aussi sur des arguments, mais ceux-ci sont nécessairement appuyés par des faits, au moyen des observations et des expériences. La science n’est pas de la métaphysique. Les fables, elles, n’appartiennent qu’aux conteurs… et aux politiciens… La vulgarisation scientifique, bref, ça peut être aussi un jeu, mais un jeu sérieux avec lequel on ne peut pas se permettre de faire et dire n’importe quoi, surtout s’il y avait une quelconque idéologie sous-jacente. Dans les livres, avec les livres, tout est possible, oui, y compris d’apprendre des erreurs, des préjugés, des concepts eux-mêmes mal compris, y compris le risque de transmettre ces erreurs à notre tour. Non, il n’est jamais trop tard pour réagir. Lire, apprendre à lire, qu’est-ce que c’est, finalement ? Répéter phonétiquement les mots ? Pas seulement. Comprendre le sens des mots ? Pas seulement. Comprendre le sens des concepts ? Oui, mais pas seulement. Apprendre vraiment à lire des livres, en particulier des livres de vulgarisation scientifique, c’est comprendre d’abord le contexte raconté, puis ensuite procéder à une patiente analyse critique avec l’aide de connaissances acquises ou nouvelles qui servent à croiser les informations. Ainsi, c’est par les comparaisons que l’on débusque les contradictions et les erreurs dans les bouquins. C’est la politique même de mon blog ici. Même de bons livres peuvent contenir au moins une erreur. Exemples de preuves ici : https://jpcmanson.wordpress.com/2012/12/28/une-erreur-dans-un-livre-de-thermodynamique-pour-ingenieurs/ et là : https://jpcmanson.wordpress.com/2011/12/03/les-encyclopedies-sont-elles-sans-erreurs-et-infaillibles/ et un prof démontre l’existence d’un manque de travail critique : https://jpcmanson.wordpress.com/2012/03/22/contre-le-plagiat-un-prof-piege-ses-eleves/

Pour ainsi dire, j’aime beaucoup la littérature. Cela dépend des styles. Et cela dépend aussi de la façon dont la science est représentée dans la littérature. Les auteurs eux-mêmes font leur métier par passion, les lecteurs aiment lire. Une façon plus profonde de lire est de réfléchir sur ce qu’on lit, surtout dans l’expression de phrases qui évoquent la vérité, la connaissance, la science. Dès que ces expressions apparaissent, je deviens extrêmement sensible et éveillé qu’un sismographe à l’affût.

Ne jamais signaler des erreurs dans la littérature quand elles concernent plus ou moins directement les sciences, ce serait trahir l’esprit humain, ce serait déshonorer notre mission, ce serait discréditer ce que nous savons ce qu’est la science. C’est un devoir de faire un compte-rendu des erreurs que l’on découvre. Le grand public a le droit d’être informé. Si créer des vocations scientifiques est une nécessité, il faut aussi que de nouvelles générations de vulgarisateurs scientifiques reprennent le flambeau quand les plus anciens ne seront plus là pour ce travail. J’aurais trop peur que cet esprit de résistance s’arrête un jour, que le peuple devienne peu à peu anesthésié par les médias, peur que les fictions l’emportent sur les faits, pour longtemps.  N’attendons pas que nos libertés soient en péril pour réagir. La littérature gentillette comme celle que j’ai analysé ici, ça peut céder la place à de la littérature plus hard dont les auteurs sont de dangereux gourous, avec leur programme de déprogrammation des cerveaux et d’embrigadement des jeunes. La transition de la façon de penser, dans la société, peut être rapide. Basculer dans l’obscurantisme est plus rapide qu’on ne le croit. N’importe quel secteur d’activité est vulnérable aux dérives. La science n’échappe pas à cette éventualité, et c’est pourquoi j’en parle. Le domaine de la vulgarisation scientifique est un terrain vulnérable, il faut agir de façon à ce que le public connaissent d’abord ce qui définit la science avant d’accumuler des connaissances issues de divers médias de toutes sortes. Même au sein de la vulgarisation scientifique, il existe un début de dérives.

Quelques pistes pour prendre conscience que, entre science et journalisme, c’est bancal :

Je vous le dis : jusqu’où ces dérives peuvent-elles conduire si aucune initiative d’analyse critique pour les contrer n’est décidée ?

Pour terminer, qu’est-ce qu’une encyclopédie ? Sa définition ? Comparer entre l’encyclopédie des arts et des sciences à l’époque de Diderot et Voltaire, et l’idée actuelle d’une encyclopédie à l’ère d’Internet ? Je pense que ce mot a vraiment perdu de sa saveur…

Ce présent article n’est pas une critique des qualités littéraires d’un écrivain, ni même une attaque personnelle. L’article dresse ici une analyse lucide sur l’amalgame  entre la création littéraire et la prétention à la vulgarisation scientifique, en montrant utilement l’existence nécessaire d’une démarcation entre fiction littéraire et faits objectifs. Je n’ai personnellement rien contre la littérature, la science-fiction et l’imaginaire, je suis moi-même occasionnellement lecteur de ces ouvrages, je fais seulement remarquer que l’on ne peut pas tout mélanger et prendre le risque d’induire les lecteurs dans des concepts erronés présentés à tort ou à travers comme des concepts scientifiques éprouvés. En effet, on ne peut pas affirmer que la science-fiction est de la science, ni que des romans sont tous basés sur des faits réels. On peut dire science-fiction et philosophie-fiction pour un roman subjectif, mais pas y attribuer l’appellation de vulgarisation scientifique. Sinon, à ce moment-là il faudrait déclarer que les livres de Tolkien («Le seigneur des anneaux») sont aussi des références scientifiques solides, ce qui serait vraiment absurde.  😉

Et pourtant, suite à la publication de ce présent article, au moins un lecteur fan de Werber m’a toisé en me disant aveuglément que c’était moi qui était égaré et que le romancier disait des vérités scientifiques irréfutables… Tsssss. Quelle mauvaise foi…

© 2013 John Philip C. Manson

Oui pour la sortie du nucléaire, mais sous condition

J’avais jusqu’à présent exprimé un avis défavorable à propos de la sortie du nucléaire. Mon argumentaire portait seulement sur les avantages du nucléaire, lesquels ne concernent que son efficacité. Il est évident que les risques sont à prendre en considération, à prendre au sérieux. Le risque zéro n’existe pas.

Je me dois d’apporter quelques nuances sur ma position, mais elles ne changent pas les conditions nécessaires d’une sortie du nucléaire comme je l’avais montré depuis ces derniers mois.

Oui pour sortir du nucléaire, mais seulement à condition qu’il existe des solutions crédibles de remplacement. Ces solutions existent : les barrages hydrauliques (mais la filière est déjà développée, y a t-il encore des places pour créer des barrages ?), les usines marémotrices (plus respectueuses de la faune que les éoliennes), des éoliennes aussi il en faut mais elles ne doivent pas être la solution principale (l’éolien est irrégulier et insuffisant en puissance réelle, et l’Allemagne a eu un recours massif aux centrales thermiques à charbon et à gaz pour compenser le manque de production électrique, et la France ne devrait pas suivre ce même inconvénient). Comme autre solution, il y a aussi les algues pour produire de l’énergie, les algues sont une meilleure solution que les agrocarburants issus de l’agriculture intensive (donc pesticides tueurs d’abeilles, c’est un problème à régler).

Il faut donc des solutions qui respectent la faune, et qui respectent la diversité botanique. Parce que pour le colza, par exemple, pour en faire du biocarburant, ça nécessite du rendement, donc probablement un traitement par pesticides, mais cela empoisonne les abeilles (les pesticides ne font JAMAIS la différence entre les insectes parasites et les insectes pollinisateurs). Je suis très favorable aux solutions de remplacement. Heureusement que des solutions sont recherchées.

Il faut donc nécessairement des solutions crédibles et fiables pour remplacer le nucléaire, ce dernier comporte des risques que je n’ai jamais nié. S’il n’y avait pas de solutions, nous ne pourrions absolument pas renoncer au nucléaire. Il est évident qu’il faut en finir avec les déchets nucléaires et contre le risque d’accident nucléaire. Mais il est tout aussi évident qu’il faut réduire les émissions de CO2 (notamment via les centrales thermiques à flamme), les éoliennes présentant (comme on l’a vu pour l’Allemagne) l’inconvénient du recours aux centrales thermiques.

Et l’Union européenne a l’objectif difficile de réduire de 30% les émissions en CO2 (mais le reste du monde industrialisé devrait faire de même pour que le projet ait un sens… La France c’est environ seulement 1% de la planète…)

Sortir du nucléaire, oui, avec un temps suffisant, au moyen de solutions concrètes et respectueuses de la faune. Mais sortir du nucléaire en seulement 10 ans, je suis sceptique. Le coût risque d’être assez élevé : coût du démantèlement du nucléaire, que va t-on faire de l’uranium 235 non utilisé, quel sera le nouveau tarif de l’électricité pendant la phase de transition ? En temps de crise économique, c’est périlleux. Je doute que cela se passera sans problème.

Oui, il faut sortir du nucléaire selon les conditions que j’ai énoncées, et sans faire de dérives idéologiques inutiles comme on le voit parfois dans les discours «écologistes»…

Il faut un développement durable rationnel et raisonné, fondé sur une démarche scientifique plutôt que politique. Le tout sans faire de propagande, parce que le public pourrait finir par se méfier de tout, et de rejeter des solutions potentielles sans faire de différence de traitement.

Il faudrait laisser place à l’écologie scientifique qui, comme je le souligne, est bien souvent différente de l’écologisme politique. Ce n’est pas en instrumentalisant l’écologie en doctrine que cela signifie que les gens vont y adhérer, et il y aura plutôt une réaction de méfiance et de rejet, parce qu’aussi l’écologisme est un enjeu de pouvoir plutôt que de solutions. 98% des électeurs n’ont pas voulu de cette mouvance aux présidentielles, mais ils ont quand même obtenu beaucoup de postes par rapport au MoDem et au FN à l’issue des élections législatives… Qu’est devenue la démocratie dans le jeu subtil des alliances entre partis ?

De plus, il faut clairement distinguer l’idéalisme des réalités. La science se veut réaliste. En ce sens, la science et la politique font mauvais ménage autant que l’ambiguïté qui sévit hélas durablement entre science et pseudo-science. Il faut des bases saines pour l’économie, l’environnement et l’énergie.

© 2012 John Philip C. Manson

Un nouvel antidote contre les radiations mortelles ?

 

 

Je suis sceptique. La radioactivité a des effets ionisants délétères absolument irréversibles. L’argument qui affirme une protection contre la radioactivité avec un médicament est aussi douteux que prétendre faire revivre les cellules d’un corps incinéré… De la prévention par des caisses de plomb de plus de 30 cm d’épaisseur, ok, et des équipements de radioprotection dans l’industrie nucléaire, ok, mais un médicament quand le mal est fait, alors là non, ce n’est pas crédible, surtout avec une dose de 7 grays. Avec une dose de 7 grays, le taux de mortalité humaine est supérieur à 50%, alors avec des souris le taux de mortalité est plus fort. Le gray est une unité de dose reçue basée sur une quantité d’énergie reçue par unité de masse corporelle. Une dose de plus de 10 grays est mortelle à 100% pour les humains. Ainsi, des souris présentant seulement 20% de mortalité pour un taux de 7 grays, c’est incohérent. Le circuit habituel et normal de la science, ce sont les publications à comité de lecture, pas la presse grand public. À ce propos, que disent les autres études expérimentales indépendantes ?

  • Je suis personnellement pour l’énergie nucléaire, parce que c’est une réalité et une nécessité économique. Sans le nucléaire, il n’y a plus d’industries, il n’y a plus d’économie, il n’y a plus rien. Revenir à un développement antérieur ne ferait que précipiter la crise économique et l’aggraver. Mais tout secteur industriel possède ses propres inconvénients et ses risques, comme le gros problème des déchets nucléaires et les menaces d’accident, ça on ne peut pas le nier. À terme, la fission nucléaire doit évoluer pour laisser place à la fusion thermonucléaire (deutérium/tritium), solution réputée sans déchets radioactifs et il faut suivre cette voie (on ne peut évidemment pas se résigner indéfiniment à la production de déchets nucléaires). Mais même si l’on est pour le nucléaire, il est inadmissible d’entendre des arguments douteux qui minimisent les dangers et qui prennent des libertés par rapport aux réalités. En science, on ne peut absolument pas se permettre de déformer la vérité.

 

Si le plomb absorbe les radiations nucléaires (notamment les rayons gamma), c’est à cause de sa grande masse atomique (207), à comparer avec la faible masse atomique des atomes des tissus biologiques (de l’hydrogène (1) à l’oxygène (16), en passant par le carbone (12) et l’azote (14)). Ainsi, des molécules comme des protéines ne peuvent pas prétendre à une quelconque efficacité en radioprotection. Les rayons gamma, du fait de leur grande énergie, sont des rayonnements pénétrants et ionisants qui détruisent les molécules (lésions dans les protéines). Pour rappel, la macromolécule d’ADN (acide désoxyribonucléique) est composée des mêmes atomes qu’une protéine, et les rayons gamma endommagent l’ADN. Pour rester sain, il faut une combinaison radioprotectice (on ressemble à un cosmonaute) ou alors vivre une vie souterraine dans un abri anti-atomique… Mais quand l’on aura été irradié, c’est trop tard, c’est irréversible. Mieux vaut prévenir que guérir.

 

 

© 2011-2012 John Philip C. Manson

Thermochimie : étude de divers combustibles

Une relecture minutieuse (le 1er juin 2012) de l’article présent atteste que les données mentionnées (l’enthalpie par unité de masse, synonyme de PCI) ne comportent pas d’erreurs, cela a été soigneusement vérifié. Y ont été ajoutés le cas du méthanol et du dihydrogène.

—————————————————–

C’est un sujet que j’ai déjà abordé.

Le présent article ajoute des détails quantitatifs supplémentaires. En outre, les gaz propane et butane sont comparés avec l’octane (essence “sans plomb”) et l’éthanol (synonyme de bioéthanol). Pour simplifier, la quantité d’eau issue des réactions de combustion est négligée volontairement.

Voici la comparaison énergétique quantitative de différents combustibles (par unité de masse de combustible) :

  • La combustion complète du dihydrogène dans le dioxygène est exothermique : énergie de 285,85 kJ/mol soit 142,92 MJ/kg.
  • La combustion complète du méthane dans le dioxygène est exothermique : énergie de 890,6 kJ/mol soit 55,6625 MJ/kg.
  • La combustion complète du propane dans le dioxygène est exothermique : énergie de 2220 kJ/mol soit 50,4545 MJ/kg.
  • La combustion complète du butane dans le dioxygène est exothermique : énergie de 2877,5 kJ/mol soit 49,612 MJ/kg.
  • La combustion complète de l’octane dans le dioxygène est exothermique : énergie de 5051 kJ/mol soit 44,307 MJ/kg.
  • La combustion complète du charbon (carbone) dans le dioxygène est exothermique : énergie de 393,5 kJ/mol soit 32,792 MJ/kg.
  • La combustion complète de l’éthanol dans le dioxygène est exothermique : énergie de 1367 kJ/mol soit 29,72 MJ/kg.
  • La combustion complète du méthanol dans le dioxygène est exothermique : énergie de 726,5 kJ/mol soit 22,7 MJ/kg.

L’expression de l’énergie produite par masse de combustible montre que le méthanol est le combustible qui produit le moins d’énergie par unité de masse, par rapport aux autres combustibles.

Comparaison des émissions massiques de CO2 par kg de gaz consumé :

  • La combustion complète du dihydrogène dans le dioxygène ne produit que de l’eau, donc 0 kg de CO2 par kg de dihydrogène. Cela n’est vrai que par des électrolyses, et c’est la solution la plus avantageuse. Mais dans les faits actuels, 95% de la production industrielle du dihydrogène est réalisée par reformage du méthane selon la réaction CH4 + O2 -> 2 H2 + CO2. La réaction produit donc 2,75 kg de CO2 par kg de méthane et 0,25 kg de dihydrogène par kg de méthane : ainsi on aura produit finalement 11 kg de CO2 pour une production de 1 kg de dihydrogène.
  • La combustion complète du méthanol dans le dioxygène produit 1,37 kg de CO2 par kg de méthanol.
  • La combustion complète de l’éthanol dans le dioxygène produit 1,91 kg de CO2 par kg d’éthanol.
  • La combustion complète du méthane dans le dioxygène produit 2,75 kg de CO2 par kg de méthane.
  • La combustion complète du propane dans le dioxygène produit 3 kg de CO2 par kg de propane.
  • La combustion complète du butane dans le dioxygène produit 3,0345 kg de CO2 par kg de butane.
  • La combustion complète de l’octane dans le dioxygène produit 3,09 kg de CO2 par kg d’octane.
  • La combustion complète du carbone dans le dioxygène produit 3,66 kg de CO2 par kg de carbone.

Le charbon (suivi de l’octane) est le combustible qui émet le plus de CO2 par unité de masse.

Équivalence énergétique de la combustion des gaz en bouteille par rapport à l’énergie électrique :

  • Une bouteille de 13 kg de propane représente une énergie thermochimique potentielle de 655,9085 MJ, soit 182,1968 kWh, soit 156541,408 kcal.
  • Une bouteille de 13 kg de butane représente une énergie thermochimique potentielle de 644,956 MJ, soit 179,1544 kWh, soit 153927,446 kcal.

Information complémentaire :

  • La combustion complète d’une charge de 13 kg de propane émet 39 kg de CO2 au total.
  • La combustion complète d’une charge de 13 kg de butane émet 39,4485 kg de CO2 au total.

Conclusion pour le gaz en bouteille :

  • Le propane est plus avantageux que le butane : pour deux quantités identiques de gaz combustible, le propane produit 1,698% d’énergie thermique de plus que le butane.
  • Si une charge de 13 kg de gaz coûte 29,00 €, alors le prix moyen de l’énergie par combustion des gaz vaut environ 16 centimes d’euro par kilowatt-heure. L’électricité d’origine nucléaire coûte environ 9 centimes d’euro par kWh. Chauffer avec du gaz revient deux fois plus cher que chauffer à l’électricité. Si on sort du nucléaire, il est absolument certain que le prix moyen du kWh c’est plus cher avec le gaz ; et la surconsommation soudaine du gaz du fait de l’abandon du nucléaire ça fera grimper les prix (le gaz étant déjà cher), à croire que c’est un coup fait exprès… Si on supprime le nucléaire on peut s’attendre à voir une grimpée du prix du gaz qui deviendra prohibitif et les conséquences sont catastrophiques… L’électricité éolienne, elle aussi, c’est plus cher que le nucléaire.
  • Une masse de 1 kg de méthane produit 1,87 fois plus d’énergie thermique que 1 kg d’éthanol. Il faut donc 1,87 kg d’éthanol pour produire autant d’énergie que 1 kg de méthane. Un véhicule qui utilise par exemple 50 kg d’éthanol dans son réservoir parcourra donc 1,87 fois moins de km que s’il avait 50 kg d’octane dans son réservoir.

BILAN TRÈS INTÉRESSANT :

La combustion complètement dans le dioxygène produit une quantité d’énergie par kg de combustible :

  • 50 milliards de kWh (soit 50 TWh) sont théoriquement productibles par 1 kg d’antimatière qui s’annihile avec 1 kg de matière. Équivaut à presque 43 mégatonnes en puissance nucléaire. On est loin de pouvoir exploiter l’antimatière…
  • 116300 à 186080 kWh sont produits par la fission nucléaire de 1 kg d’uranium enrichi, la fission n’émet pas de CO2. Un kg d’uranium fissile équivaut de 10 à 16 kilotonnes de puissance nucléaire.
  • 15,462 kWh sont produits par 1 kg de méthane, ça émet par conséquent 2,75 kg de CO2.
  • 14,015 kWh sont produits par 1 kg de propane, ça émet par conséquent 3 kg de CO2.
  • 13,78 kWh sont produits par 1 kg de butane, ça émet par conséquent 3,03 kg de CO2.
  • 12,31 kWh sont produits par 1 kg d’octane, ça émet par conséquent 3,09 kg de CO2.
  • 9,11 kWh sont produits par 1 kg de charbon (carbone), ça émet par conséquent 3,66 kg de CO2.
  • 8,26 kWh sont produits par 1 kg d’éthanol, ça émet par conséquent 1,91 kg de CO2.

Parmi les combustibles, l’éthanol est celui qui fournit le moins d’énergie par unité de masse. Au niveau du rendement, le méthane est le combustible le plus avantageux (1,87 fois plus énergétique que l’éthanol par unité de masse de combustible).

La combustion complète dans le dioxygène (excepté la fission nucléaire) produit 1 kWh selon diverses masses de combustibles :

  • 1 kWh = 0,0033 g d’uranium enrichi (ou 0,0086 g d’uranium dans réacteur à eau à cycle ouvert) , soit une émission de 0 g de CO2.
  • 1 kWh = 65 g de méthane, soit une émission de 179 g de CO2.
  • 1 kWh = 71 g de propane, soit une émission de 213 g de CO2.
  • 1 kWh = 72,6 g de butane, soit une émission de 220,3 g de CO2.
  • 1 kWh = 121 g d’éthanol, soit une émission de 231 g de CO2.
  • 1 kWh = 81 g d’octane, soit une émission de 250,3 g de CO2.
  • 1 kWh = 110 g de carbone, soit une émission de 401,8 g de CO2.

Par kWh produit, le charbon est de tous les combustibles le plus émetteur en CO2. Les centrales électriques à charbon sont donc une mauvaise option énergétique.
 

Bilan énergétique : 

  • Pour une même quantité d’énergie thermochimique produite, l’octane émet environ 8% de CO2 de plus que l’éthanol, ce qui est une marge faible.
  • Mais pour produire une énergie équivalente, il faut une masse d’environ 49% d’éthanol en plus par rapport à l’octane, ce qui est un gros inconvénient.
  • Sachant que l’octane coûte actuellement environ 1,5 € par litre à la pompe à essence, alors ça correspond à 2,13 € par kg d’octane, sachant aussi que 1 kg d’octane équivaut à 12,31 kWh, alors le prix moyen du kWh par combustion de l’octane est de 17,3 centimes d’euros, ce qui est un prix énergétique sensiblement proche du prix du kWh du gaz en bouteille (lui, environ 16 centimes d’euro par kWh produit).
  • Raisonnement réaliste : Supposons que certains décident d’arrêter tout le nucléaire au profit des centrales électriques à charbon. Si tout le nucléaire était remplacé par des centrales électriques à charbon, cela reviendrait à dire que les 508,42 milliards de kWh annuels devront être produits par le charbon au lieu de la fission de l’uranium, ça consiste à renoncer à 2732 à 4372 tonnes d’uranium seulement pour se résigner à préférer transporter à travers le monde (importation) puis brûler les 34,8 millions de tonnes annuelles de charbon venu du monde entier qui émettront ainsi 127,7 millions de tonnes de CO2 par an

© 2011 John Philip C. Manson