Détection mathématique de triche dans une classe d’école

Je propose un exercice inédit que j’ai inventé.

On suppose que la distribution des notes dans une classe de N élèves est une courbe gaussienne normale centrée sur une moyenne. Ces notes forment une courbe gaussienne classique qui reste habituelle, sans changements de notes majeurs.

Je pose m=intégrale de x=a à x=b de (1/(k*(2*pi)^0.5)) * e^(-(x-µ)²/(2*k²)).

m est ici une valeur entre 0 et 1, c’est la proportion d’élèves ayant une note comprise entre a et b, selon un écart-type k.

Il peut arriver que les élèves se mettent à travailler mieux afin d’améliorer leur note, ce qui modifierait du coup la courbe gaussienne. L’intérêt est d’évaluer la variation par rapport à la courbe habituelle.

Supposons un cas où la moyenne de la classe est µ = 14,01 (sur 20), lors du dernier trimestre par exemple. Son écart-type est de k = 3,76. On obtient alors une courbe gaussienne particulière, véritable signature instantanée de la classe.

On va ensuite exposer une problématique. Lors du trimestre suivant : parmi une classe de N élèves, x élèves obtiennent chacun une note supérieure ou égale à 18. La question : y a t-il eu triche ?

Probabilité pour que x élèves aient plus de 18 sur 20 : on calcule T = l’intégrale de x=18 à x=20 de (1/(3,76*(2*pi)^0.5)) * e^(-(x-14,01)²/(2*3,76²)) avec un écart-type k = 3,76.

La probabilité devient P = (N! / ((N-x)!*x!)) * T^x * (1-T)^(N-x).

Si la probabilité est inférieure à 0,05, on peut légitimement soupçonner une fraude. Dans notre exemple ci-dessus, si x est supérieur ou égal à 5, on peut avoir des doutes. Parmi ceux qui ont eu plus de 18/20, il y a des fraudeurs mais il peut y avoir aussi ceux qui ont mérité leur note. On peut détecter la fraude mais on ne peut pas identifier les tricheurs, le meilleur choix est de coller un zéro à tout le monde, comme sanction, on est sûr alors d’avoir atteint les tricheurs, même si on fait des victimes collatérales…

  • Voici un autre débat : la suppression des notes à l’école.

Certains pédagogues ont l’idée saugrenue de supprimer la notation des élèves… Supprimer les notes, c’est tromper les élèves. Et surtout, comment ferait-on pour détecter la probabilité de triche lors d’un examen de mathématiques par exemple ?

Le but des mauvaises notes quand on en reçoit, c’est d’identifier ses propres erreurs, de se remettre en question dans le but de s’améliorer. Je n’ai pas toujours été bon en maths autrefois (il y a bien longtemps), et une mauvaise notation contraint à redoubler d’efforts pour progresser. Quand on veut comprendre, on finit toujours par y arriver, on le peut. Les efforts réguliers produisent toujours une progression. Se dire « Je suis nul en maths » c’est en fait un effet nocebo (contraire du placebo), une méthode Coué avec des effets délétères et fatalistes. Si on ne note plus les élèves, on ne fera que masquer et nier un problème de plus. L’école est nivelée par le bas, et bientôt il ne finira par ne plus rien rester du tout !

  • La notation sur 10 ou sur 20 offre une évaluation fiable : elle est le meilleur critère pour évaluer le travail de l’élève et permet aux parents de savoir où en est leur enfant. La note est la mesure d’une compétence. Elle n’a pas pour seule vocation de « juger » un élève ni même de les comparer entre eux. Elle a aussi pour avantage d’être simple, en comparaison des autres systèmes d’évaluation par « acquisition de compétences » avec des codes de couleurs (rouge, orange, jaune, vert), de lettres (ABCD) ou de chiffres (de 1 à 4). Avec ces systèmes alternatifs, il serait plus complexe pour les enseignants de mesurer ce qui est acquis et ce qui ne l’est pas. Il y aurait aussi un risque que ces barèmes aboutissent à trop de laxisme. Les notes sur 10 ou sur 20 peuvent inciter les élèves à travailler pour progresser, à condition que les professeurs précisent ce qu’il faut améliorer et encouragent les élèves. A l’école, la sélection est naturelle, elle ne dépend que des efforts des élèves, un prof ne donne pas des mauvaises notes par injustice ni par sadisme. Moi je le dis clairement : niveler l’école selon les désirs des élèves ou celui de leurs parents, pour leur faire plaisir, ça ne les aide absolument pas ! Le progrès scolaire n’est possible qu’avec une contrainte ou une difficulté, une bonne note ça doit se mériter. Le remède contre l’échec scolaire ne tient qu’en un seul mot : le travail, aussi bien de la part des profs que celle de leurs élèves. La question à se poser : le problème est-il la notation elle-même ou les échecs qu’elle révèle ?

 

Publicités