Statistiques : notion de QI, p-value et valeur significative

Cela fait du bien de se remettre dans le bain des mathématiques. On a tendance à oublier un peu quelques notions quand on n’exerce plus de maths (ou certaines spécialités de maths) depuis un moment.

J’ai longtemps critiqué le concept de QI, et aujourd’hui je n’en pense pas moins.

Mais dans le présent article, outre le concept évasif d’intelligence, je vais aborder un détail pourtant essentiel quand on parle de statistiques.

En effet, si l’on entend souvent parler des tests de QI, de la mesure du QI, il semble que l’on entende jamais parler de résultat significatif quand on parle d’un QI.

Comme nous le savons tous, le QI moyen d’une population est calibré (ajusté) à 100. Et quand un QI est supérieur à 100, on parle de surefficience intellectuelle, voire de surdouance. Alors je vais parler de signifiance, afin de calculer à partir de quel QI (selon un résultat de test de QI) est un résultat significatif.

Un paramètre, nommé p-value, entre dans son rôle : quand il est de valeur inférieure à 0,05, ce qui est une valeur souvent utilisée, on dit que le résultat est significatif. Mais une autre valeur (0,01), plus contraignante, est parfois utilisée par les scientifiques exigeants.

  • Dans le site http://www.wolframalpha.com on tape ces paramètres : normal distribution, mean=100, sd=15, p-value=0.05.
  • En français, cela veut dire : distribution normale de Gauss, moyenne = 100, écart-type = 15, p-value = 0,05.

Pour une p-value inférieure à 0,05 : il faut un QI supérieur à 124,7 pour que le QI mesuré représente quelque chose de significatif (afin de déclarer qu’un individu à « quelque chose en plus » par rapport à la moyenne).

Pour une p-value inférieure à 0,01 : il faut un QI supérieur à 134,9 pour que le QI mesuré représente quelque chose de significatif.

Pour les QI inférieurs au seuil : non statistiquement significatif.

Mais comme je l’ai montré dans un ancien article : le QI est variable avec plusieurs test, un homme ayant un QI moyen de 126 peut avoir des tests dont le QI mesuré oscille entre 103 et 143. Il existe ainsi une part d’incertitude autour de la moyenne des tests. Le QI est alors de 125,67 ± 11,16. Ce qui donne aussi une incertitude à la réponse à la question suivante : le résultat est-il significatif ou pas ? Le résultat, s’il était rigoureusement précis, soit 126, aurait été supérieur à la valeur critique de 124,7. Mais comme il existe un écart-type non nul, la signifiance d’un résultat implique la probabilité pour qu’un résultat soit significatif : 53,46% pour qu’il le soit, avec une p-value de 0,05, dans l’exemple évoqué. Mais 20,41% de probabilité avec une p-value de 0,01. Et ça n’apprend rien de plus. Pour savoir si le QI a une valeur significative, il faudra faire d’assez nombreux tests… Après tout, le QI n’est qu’un accessoire. Pour que la p-value ait un sens, il faudrait que le concept de QI ait un sens lui aussi, or la mesure de l’intelligence est quelque chose de flou. On ne sait pas vraiment ce que l’on mesure. Des tests basés sur l’efficacité des médicaments expérimentaux par les labos pharmaceutiques (tests d’une molécule active et comparaison avec l’effet placebo), voila quelque chose de plus concret, qui a plus de sens (quand il n’y a pas de fraude scientifique, évidemment).

 

Moi intelligent ou bête ? Ni l’un ni l’autre. Peu importe à partir du moment que je peux encore aller aux WC, j’avais peur que ça cicatrise…

iconlol

© 2014 John Philip C. Manson

 

Advertisements